skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hu, Jiang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Within the rapidly evolving domain of Electronic Design Automation (EDA), Large Language Models (LLMs) have emerged as transformative technologies, offering unprecedented capabilities for optimizing and automating various aspects of electronic design. This survey provides a comprehensive exploration of LLM applications in EDA, focusing on advancements in model architectures, the implications of varying model sizes, and innovative customization techniques that enable tailored analytical insights. By examining the intersection of LLM capabilities and EDA requirements, the article highlights the significant impact these models have on extracting nuanced understandings from complex datasets. Furthermore, it addresses the challenges and opportunities in integrating LLMs into EDA workflows, paving the way for future research and application in this dynamic field. Through this detailed analysis, the survey aims to offer valuable insights to professionals in the EDA industry, AI researchers, and anyone interested in the convergence of advanced AI technologies and electronic design. 
    more » « less
    Free, publicly-accessible full text available May 31, 2026
  2. Free, publicly-accessible full text available December 1, 2025
  3. Free, publicly-accessible full text available June 22, 2026
  4. The rise of machine learning (ML) technology inspires a boom in its applications in electronic design automation (EDA) and helps improve the degree of automation in chip designs. However, manually crafting ML models remains a complex and time-consuming process because it requires extensive human expertise and tremendous engineering efforts to carefully extract features and design model architectures. In this work, we leverage automated ML techniques to automate the ML model development for routability prediction, a well-established technique that can help to guide cell placement toward routable solutions. We present an automated feature selection method to identify suitable features for model inputs. We develop a neural architecture search method to search for high-quality neural architectures without human interference. Our search method supports various operations and highly flexible connections, leading to architectures significantly different from all previous human-crafted models. Our experimental results demonstrate that our automatically generated models clearly outperform multiple representative manually crafted solutions with a superior 9.9% improvement. Moreover, compared with human-crafted models, which easily take weeks or months to develop, our efficient automated machine-learning framework completes the whole model development process in only 1 day. 
    more » « less
  5. In this paper we present an approximate division scheme for Scaled Population (SP) arithmetic, a technique that improves on the limitations of stochastic computing (SC). SP arithmetic circuits are designed (a) to perform all operations with a constant delay, and (b) they use scaling operations to help reduce errors compared to SC circuits. As part of this work, we also present a method to correlate two SP numbers with a constant delay. We compare our SP divider with SC dividers, as well as fixed-point dividers (in terms of area, power and delay). Our 512-bit SP divider has a delay (power) that is 0.08× (0.06×) that of the equivalent fixed-point binary divider. Compared to a equivalent SC divider, our power-delay-product is 13× better. Index Terms—Approximate Arithmetic, Stochastic Computing, Computer Arithmetic, Approximate Division, Fast Division 
    more » « less